$\left(\frac{\sim}{4}\right.$

(1) GH PROGRESS FI_AIVIE

ATTACK HOSE WITH SPEECIAI. FIAMIE RESISTANT RUBBBER COIMIPOUNID, DIESIGNEIJ FOR WIIIDFIRES

FEATURES

- Very lightweight and highly flexible (also at extremely low temperatures)
- Small coil diameter
- Excellent resistance to ageing and ozone
- Lining extremely resistant to seawater and a wide range of chemicals (see resistance table)
- Mildew and rotproof
- Easy to repair

CONSTRUCTION

Jacket lining:

- Warp: high-tenacity polyester

Weft: polyamide; circular woven

- The special jacket construction ensures outstanding adhesion and much lower pressure loss compared to a 100% polyester jacket lining
- Totally embedded in the rubber, offering optimum protection against mechanical damage

Rubberised lining and jacket:

- Very high-grade NBR/PVC rubber compound, extruded through the weave in a special one-step production process
- Special additives in the compound guarantee outstanding resistance to ageing and ozone
- very flexible

PRESSSURES

Specifications apply only to the hose (medium water, $20^{\circ} \mathrm{C}$). The potential working pressure may be lower than specified above for hose lines with couplings due to the nominal pressure of the couplings or the type of assembly.

DIN 14811 with STORZ couplings:
Ø 25-75 mm: max. working pressure 16 bar

Maximum working pressure:

Approval can only be given by the manufacturer upon clarification of the exact area of application.

STANIJARI COILOR

GH PROGRESS FLAME: RED
GH PROGRESS FLAME HP: YELLOW

TEIVIPERRATURE

Continuous use $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ (water) Temporary up to $+100^{\circ} \mathrm{C}$ (water)

Bore size in mm	Weight in g/m	Wall thickness in mm	Working pressure in bar / PSI	Working pressure max. in bar / PSI	Bursting pressure in bar / PSI
25	210	2,3	25/365	$30 / 435$	75/1090
GH PROGRESS FLAME HP					
25	240	2,6	40 / 580	48/695	120 / 1740

